PHYC 463 Advanced Optics I Fall 2007 Homework #2, Due Wednesday Sept. 5

- 1- Consider an astronaut floating in free space with only a 10 W lantern. How long will it take to reach a speed of 10 m/sec using the radiation as propulsion? The astronaut's total mass is 100 kg.
- 2-Problem 2.8 (K&F)
- 3-Problem 2.9 (K&F)
- 4-Suppose we want to suspend spherical particles of radius r and density ρ (gr./cm³) in vacuum using radiation pressure.
- a- Assuming the particles are highly reflecting ($R\approx1$), what is the irradiance required to suspend these particle against earth's gravitational force?
- b- For aluminum particles having ρ =2.7 gr/cm³ and r=100 μ m, calculate the suspension irradiance I_s. (Note: g=980 cm/sec²)

w

$$F = m \frac{dv}{dt}$$

$$I = I_0 e^{-\lambda d} = 1 \cdot e^{-\lambda d} =$$

$$d = \frac{14\pi}{\lambda} = \frac{1}{2} = \frac{1}{2}$$

$$\tilde{h} = 4 - i2 = n - ik$$

$$E = 6.(4-i2)^2 = 12-16i$$

$$\frac{z}{S} = \frac{2\pi k}{S} = \frac{2\pi k}{2}$$

$$S = \frac{\lambda}{2\pi \lambda} = \left(\frac{1}{8\pi}\right) \lambda$$

$$\mathcal{B} = \frac{\hat{n}}{c} \hat{s}_{x} E = \frac{1 \hat{n} \hat{l}}{c} \hat{s}_{x} E_{o} e^{\frac{-\frac{1}{8}}{6} - i \mathcal{D}_{EB} + i \mathcal{D}_{EB}}$$

$$\mathcal{L}_{EB} = \text{Phase}\left(\tilde{n}\right) = \tan\frac{k}{n} = \tan\frac{2}{4} = 26.5$$

$$\frac{T_*A_{**}2R}{\alpha} = mg$$

$$A_x = \pi r^2$$
, $R(y|ectify) = 1$

but
$$m = PV = P \times \frac{4\pi}{3} V^3$$

(b)
$$I_{5} = \frac{2}{3} \times \frac{16}{16} \times 2.7 \times 10^{8} \times 9.8 \times 3 \times 10^{8} = 53 \frac{kW}{m^{2}}$$